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Summary: Cottpnmds~ssessing thiol, SW@. and suQbxidefrrnctionali~ attached to chiral auihry fragment 1 can be synthe- 
sizedfiom hak?gena&d aromatics 2 and 3. In the su&oxides, ax&q 1 can d&u the su@nyl confguration in either relaiu sense 
depending on whether *nyl configuration is esMMcd under kinetic or theimodynomic control. 

The invention of enantioselective carbon-carbon bond formatioa methodology is currently a high priority goal of synthesis 

research. Sulfur is a particularly auractive reaction focus. in this regard, owing to the diversity of carbon-carboo bond forming reac- 

tions it mediates? While most previous efforts to develop enanricselcctivc sulfur-mediated reactions have located StereogcAcity at 

sulfur, we have been interested in an auxiliary-based approach to facilitate the mycling of reagent absolute stenzochemistry. Herein 

we outline the synthesis of racemic substances with sulfur functionality appended to the monodeotate chifal auxiliary fragment 1, aod 

illusttate the way in which auxiliaries of this type can control the relative stereoselection that must underlie their involvement in enan- 

tioseiective chemistry. - 

The cuosbuction of reagents bearing 1 m through biaryl 43 aod terphenyl6 (Scheme I). Although we planned ini- 

tially to product 4 through nickelcatalyzed chemistry devebped by Kumada$ treatment of 25 and the Grignard reagent derived fmm 

36 with various phosphineligated nickel dichloride catalysts, as wuircd by that approach. gave products that arose from halogen- 

metal exchange, i.e. 2 decomposed and 3 was reformed. On the other hand, when 2,6-dichlorobromobenzene and 

1~.3-trichlomben~~ were pa&d with the Grignard reagent derived from 3 under similar cot&ions, no reaction occurred in eilher 

case. Instead, 4 could be synthesized duough the Ulbnann atuprrng’ indicated. which involved Rieke copper.* The diffemntial reac- 

tivity of 2 and 3 in the Ulhnann reaction allows the lattex to be used in excess to optimize hetemcoupling; recovery of 3 is eff&nt 

since its homocoupling is impeded. Regarding the instalMioo of the phenyl substituent that restricts biaryl rotation,g agaio we had 

inter&d to make use of the Kumada chemisoy. but changed course after 4 proved to he umeactive toward phenylmagoesimn halii 

in the presence of nickel catalysts, and the mono-Grigna& reagent derived from 4 failed to attack bmmobenzne under similar condi- 

tions. In the altemative route developed, 4 WBS ConvcltedlO to chlorothiol5. which underwent a nickelcatalyxed reaction with 

phenyhnagnesium bromide that led through thiol substitutkn~*~ to 6. We conclude from our experience with these nickel-catalyxed 

processes that the sulfur substitution chemistry deve4oped by the Wenlrat group is far less sensitive to st&c congestion than is the 

analogous halide substituti~ chemistry.12 

ThefinaloptrationinthesynthesisofreagentsbaPedonlrcquindastcondapplicationofthereaction~srylch!o- 

rides and sodimn tnethylthiolate emptoyed in the fommdoa of 5. Howevcr since the product of this nzaction prior to aqueous work up 

is the sodium arylthiolatc, it can be queoched in sift with a variety of electrophiks. Bight such examples are listed in Scheme I. 

Electrophiles that failed in this thiolate capture plotocol in&led cyclopenteoooc and cyclohexeoonc (polymerization of the enooes 
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Scheme I 
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occtmed). and cydobexene oxide (no reaction or tmfaverabIe equiIibrium). Thus 7 - 14 are avaiIabIe tbnntgh four upatkms fmm 

thehaIogeWedatunatics2and3inoveraUyieIdsc629-37%. 

To gauge tbe effectiveness of auxiky 1 in contdittg stawdectial in the vicinity of sllIftu~ the lmwedms of8antI11- 

14totheirumqmdingsuIfoxideswereinvest@wd(!kbemeII). Inthecaseof8,IowtempuatureMCPBAoxidaticmgavewith 

909b~tionthediastnwmaindiutcd.asinglereay~nmovcdIheminadiaslcnana. Sincethispucwsisaki- 

netic.aUy wntroIIed one. it seems likely tbat extund reagent attack uccms within the Iarge cavity r&m defined by the e-rert-butyl 

substituent in a reactive rotamer that pmjects tbe methyl substitwnt into tbe smaU cavity tegien: see the crydbgqbidy dua- 

mined stntcture of 15l depicted in Scheme II. 

In contrast, oxone oxidatiod3 of 11-14 foIlowed by equiIibration of the sdfoxides so pmduced through the suIfoxi& 

sulfmate reatrimgemad4 provided similar degtws 0fdiwtawWection. but in the opposite sense. In these thermodynsmidy con- 

tmkd cases, it is dear that it is the mere stericaUy demanding aIIylic substituent that chuoses to reside in the Iarge cavity; see the 
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than benzono I nlux or 26 OC 

66-66% 

brgecavity $ small avlty 

ortho phenyl dclolad for cbrlty 

16 

16 R’,F?sH 

17 R’rMo,ti=H 

18 R’=Ph,R?sH 

19 R’,R2s~ 

92:s 

87(E):S(E):lO(Z) 

82:8 

93:7 

model of ally1 sulfoxide 16.15 Crotyl sulfoxide 17 is noteworthy in that heating it in refluxing benzene or storing it at mom tempera- 

ture as the solid for seveml weeks or in sdution for several days led to aa increase in the amoant of 2 isomer. Rebtively brief equili- 

bration of its sulfur configuration at mom tempaature maintained the non-equilibrium olefm geometrical composition incorpomted 

through alkylation with commercially available crotyl bromide in the previous step. This experience suggests tbat the signifrant dif- 

ference in the rate3 of con@rational equilibration at the sulfur center sod geomeoical equilibration of the oletlm in ~substituted al- 

lylic sulfo~ides~~ will allow the preservation of E geometry in reagents preped. for example, from geometrically pure E-2-alken-1-. 

01 derivatives. configurationally defined sulfoxidts form the basis of much useful asymmetric synthesis me&odology? Sulfqxides 

16 - 19 undergo regio- and diiastereoseective conjugate additions to cyclopentc~~~~ and. in the case of 19. to cyclohexenone.la 
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Finally. aoxikuy 1 represents but the fii generadon of a genemI design. In order to shorten the synthesis of reagents and to 

enhance the s&reoselectivities they effect, we anticipate that modification of the ter&utyl-bearing ring will be necessary. For exam- 

ple, the removal of the distal rerr-butyl substiruenl a synthetic convenience associated with desii 1. aad akration of the proximal 

substituent wiII better differentiate the sizes of the Iarge and smaI1 cavities, and wiII prodoce a stn~cturaIIy simpler auxiliary. These 
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